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Accurate structure refinement from electron-diffraction data is not possible

without taking the dynamical-diffraction effects into account. A complete three-

dimensional model of the structure can be obtained only from a sufficiently

complete three-dimensional data set. In this work a method is presented for

crystal structure refinement from the data obtained by electron diffraction

tomography, possibly combined with precession electron diffraction. The

principle of the method is identical to that used in X-ray crystallography: data

are collected in a series of small tilt steps around a rotation axis, then intensities

are integrated and the structure is optimized by least-squares refinement against

the integrated intensities. In the dynamical theory of diffraction, the reflection

intensities exhibit a complicated relationship to the orientation and thickness of

the crystal as well as to structure factors of other reflections. This complication

requires the introduction of several special parameters in the procedure. The

method was implemented in the freely available crystallographic computing

system Jana2006.

1. Introduction

Structure solution and refinement from single-crystal X-ray

diffraction data has become a standard approach for deter-

mination of crystal structures. On the other hand, electron

diffraction used to be applied for the same purpose much

more rarely, although numerous successful solutions were

reported (Vainshtein, 1964; Cowley, 1992; Dorset, 1995). The

situation has been changing rapidly in the past decade with the

advent of electron diffraction tomography (EDT) methods

(Kolb et al., 2007, 2008; Wan et al., 2013), possibly combined

with precession electron diffraction (PED) (Vincent &

Midgley, 1994; Mugnaioli et al., 2009). With these methods, a

large number of increasingly complex structures were solved

and refined. However, all the structure refinements were

performed using kinematical approximation for the calcula-

tion of model intensities. Kinematical approximation implies

that diffracted intensity associated with diffraction vector h is

proportional to the amplitude squared of the corresponding

structure factor Fh. It is, however, well known that this

approximation has only limited validity for electron-

diffraction data. Measures have been taken to minimize the

departure of the electron-diffraction data from the kinema-

tical limit by integrating the diffracted intensities across

several beam orientations (using precession electron diffrac-

tion or fine-step slicing in rotation electron diffraction).

Despite these measures, the refinements using this approx-

imation are difficult, and yield high figures of merit and low

accuracy of the refined structure parameters.
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An obvious remedy to this problem is avoiding the kine-

matical approximation in the calculation of diffracted inten-

sities, and instead using the correct dynamical-diffraction

theory. This approach has indeed been taken in the past

(Jansen et al., 1998; Dudka et al., 2008; Oleynikov, 2011).

However, it has always been performed on oriented diffrac-

tion patterns, while for a robust and complete structure

refinement it is necessary to refine the structure against a

three-dimensional data set, and ideally maintain a high data-

to-parameter ratio. Such data are obtained with electron

diffraction tomography techniques. We have therefore

decided to develop and implement a structure refinement

technique that would use a series of non-oriented electron-

diffraction patterns obtained by EDT, and calculated model

intensities using full dynamical calculations. The first steps

towards this goal were described in a previous paper [Pala-

tinus et al. (2013), denoted paper I hereafter]. In paper I we

have used oriented diffraction patterns of three compounds to

show that using dynamical diffraction indeed yields results

superior to the kinematical approximation. Moreover, we

have also shown that using PED provides results with better

figures of merit, stable refinements and more accurate struc-

ture parameters. The method presented in this work can be

applied to data collected by EDT with, as well as without,

precession.

2. Theory

2.1. Dynamical diffraction – calculation of diffracted
intensities

The theory of electron diffraction by crystals is well

elaborated and several excellent sources with various degrees

of detail and complexity are available. In this work we used

the Bloch-wave formalism for the calculation of diffracted

intensities. We outline only the basic formulae used in the

calculation. The formulation used in this section is based on

the book Electron Microdiffraction by Spence & Zuo (1992).

Another useful source of information is the book Electron

Microscopy of Thin Crystals by Hirsch et al. (1977) or the

excellent treatise by Metherel (1975).

When back-scattering of electrons is ignored, the diffraction

can be described by means of a scattering matrix S, which

relates the diffracted waves at thickness t [’gðtÞ] with the

incident waves on the crystal surface [’gð0Þ]. The scattering

matrix is obtained by exponentiation of the so-called structure

matrix A:

S ¼ M exp
2�it

2Kn

A

� �
M�1: ð1Þ

This formula can be rewritten explicitly using the eigenvector

matrix B and diagonal eigenvalue matrix K of the structure

matrix A:

S ¼ MB exp
2�it

2Kn

K

� �
B�1M�1: ð2Þ

The following quantities enter this expression directly or

indirectly:

(a) t: the thickness of the crystal slab.

(b) fgi; i ¼ 1 . . . ng: a set of n diffraction vectors of excited

beams considered in the calculation.

(c) n: normal to the entrance surface of the crystal pointing

out from the crystal towards the source of electrons.

(d) K: wavevector of the incident beam with amplitude

corrected for the mean inner potential U0 of the crystal.

jKj ¼ ðK2
0 þ U0Þ

1=2, with K0 being the wavevector amplitude

in vacuum.

(e) gn, Kn: the projections of the vectors g and K onto the

surface normal n. gn ¼ g � n, Kn ¼ K � n.

(f) Structure matrix A: a square matrix with number of rows

equal to the number of excited beams considered in the

calculation. The diagonal elements of A are given by

aii ¼
jKj2 � jKþ gij

2

ð1þ gn;i=KnÞ
1=2
: ð3Þ

The off-diagonal elements are

aij ¼
Ugi�gj

ð1þ gn;i=KnÞ
1=2
ð1þ gn;j=KnÞ

1=2
: ð4Þ

(g) M: a diagonal matrix with elements

mii ¼ 1=ð1þ gn;i=KnÞ
1=2: ð5Þ

Note that the formulae simplify considerably if only beams

with g parallel to the crystal surface are excited. In such case

gn;i ¼ 0 and matrix M is an identity matrix. This assumption is

frequently used to calculate zero-order Laue-zone diffraction

from an oriented crystal slab. This condition, however, is

almost never fulfilled for EDT data, and full calculation

including the non-zero gn term should be used.1

If the incident wavefield consists of only one incident beam,

the diffracted waves at thickness t are given by the elements of

the first column of the scattering matrix, and the diffracted

intensities are obtained as the amplitude squared of these

elements:

Igi
¼ jsi1j

2: ð6Þ

These expressions allow calculation of diffracted intensities in

the general case of a non-oriented diffraction pattern taken on

a tilted crystal. Absorption effects can be included through

additional imaginary terms in the structure factors Ug (Bird &

King, 1990; Weickenmeier & Kohl, 1991). The most important

limitation of this procedure is the assumption that the crystal

is a slab of constant thickness.

For practical calculation it is convenient to select a Carte-

sian coordinate system such that the x axis lies in the rotation

axis of the goniometer, the z axis points towards the beam and

the y axis completes the right-handed system. Then the

wavevector of the incident beam in this Cartesian system is

236 Lukáš Palatinus et al. � Refinement using electron diffraction tomography Acta Cryst. (2015). A71, 235–244

research papers

1 Note that the formulae presented in paper I do not include this effect and are
thus valid exactly only for oriented patterns with zone axis parallel to the
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K ¼ ð0; 0;�jKjÞ, and the vector g with indices ðh; k; lÞ

expressed in the crystal’s reciprocal space can be transformed

into the coordinates ðx; y; zÞ of the Cartesian system by means

of the orientation matrix UB. According to the standard

definition, the ith column of UB contains the Cartesian

coordinates of the coordinates of the ith basic vector of the

reciprocal lattice, and the transformation is thus ðx; y; zÞ
T =

UB � ðh; k; lÞ
T.

Structure refinement by the least-squares method requires

knowledge of the derivatives of the intensities with respect to

structure parameters. These derivatives can always be esti-

mated using the method of finite differences. However,

explicit formulae exist that are significantly faster than

numerical evaluation of the derivatives. In this work we used

the formulation described e.g. in van der Aa et al. (2007),

where explicit formulae for the derivatives of the eigenvector

matrix B and eigenvalue matrix K are derived, if the derivative

of the structure matrix A is known. The off-diagonal elements

of the matrix A are the structure factors, and their derivatives

with respect to the structure parameters are thus readily

available. Once the derivatives dB=dp and dK=dp are known,

the intensity derivatives dIh=dp can be calculated with only

two matrix–matrix multiplications and a small number of

matrix–vector multiplications, making the procedure several

times faster than two matrix diagonalizations necessary for the

calculation of the derivatives using the method of central finite

differences.

2.2. Using precession electron diffraction with dynamical
calculations

Precession electron diffraction is generally regarded as a

technique that suppresses the dynamical character of

diffracted intensities (Vincent & Midgley, 1994; Berg et al.,

1998; Mugnaioli et al., 2009). The intensities obtained with

PED tend to be closer to the kinematical limit than intensities

obtained without precession. It might thus appear superfluous

to use precession electron diffraction, if dynamical-diffraction

theory is used. However, it was shown in Own et al. (2006) and

in detail in paper I that this combination is very useful. The

PED intensities are much less sensitive to crystal imperfec-

tions like thickness variations or slight bending, and more

sensitive to the variation of structural parameters. Hence,

diffraction data obtained with PED can be fitted more accu-

rately than non-PED data and they yield more accurate

structural parameters. The price to pay for this improvement is

the increased computing time. PED intensities are an integral

over all orientations of the primary beam along the precession

circuit, and calculation of the intensities requires evaluation of

the dynamical-diffraction pattern in a number of beam

orientations. It was shown in paper I (see Fig. 5 therein) that

the necessary number of integration steps may range from 100

to over 500 depending on the sample thickness.

2.3. Data processing and intensity extraction

The data processing for dynamical refinement from EDT

data is very similar to the procedure described for EDT data

previously (Kolb et al., 2007, 2008; Palatinus et al., 2011). It

involves the following steps:

(i) Peak hunting: locating positions of reflections on each

diffraction pattern.

(ii) Indexing: determining the unit-cell parameters and

orientation matrix from the reflection positions.

(iii) Integration: determination of integrated intensities for

each reflection.

Data processing for dynamical refinement is specific in the

integration step. It is obvious from x2.1, equation (3), that the

dynamical intensities depend on the orientation of the crystal

(through the term jKþ gj2), and the intensity of the same

reflection on subsequent frames is not a simple function of the

crystal orientation, as in the kinematical case. The dependence

is even more complicated for PED data. It is therefore

necessary to fit intensities on each pattern separately. The

input for the dynamical refinement is thus the orientation

matrix of the crystal, a list of positional angles for each

recorded diffraction pattern, and then a list of reflection

indices, intensities and e.s.d.’s of the intensities together with

the identifier of the pattern on which the reflection was

recorded. If the same reflection appears on more consecutive

patterns, it may appear in the list several times, once for every

pattern on which it was recorded.

A reflection is included in the output list if it is for a given

pattern close enough to the exact Bragg condition. The

deviation of the reflection from exact Bragg condition can be

measured by excitation error Sg. Sg is the distance of the

reciprocal-lattice node from the Ewald sphere. Sg can be

calculated to a good approximation as

Sg ’
jKj2 � jKþ gj2

2jKj
: ð7Þ

All reflections with Sg smaller than a certain threshold Sint
g

should be considered present on a given frame and their

intensities should be determined. Sint
g is the only parameter of

the integration procedure specific to the data processing for

dynamical refinement.

2.4. Data selection

Each recorded pattern is populated with a certain set of

reflections, and each of these reflections can be characterized

by a number of quantities. The most important for the

refinement are the following:

(a) The length of the diffraction vector g.

(b) Excitation error of the reflection without taking the

precession into account S0
g: this excitation error can be

calculated from equation (7).

(c) Minimum and maximum excitation error reached during

the precession circuit Smin
g and Smax

g : it follows directly from the

geometry of the PED that the minimum and maximum exci-

tation errors for reflection g are given by the following

formulae (valid for small angles ’):

Smin
g ’ S0

g � jgj’; ð8Þ
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Smax
g ’ S0

g þ jgj’: ð9Þ

(d) The ratio RSg
¼ jS0

gj=ðjgj’Þ: this ratio expresses how well

the reflection is ‘covered’ by the precession motion. If RSg
< 1,

then the reflection passes through the exact Bragg condition

twice during the precession circuit. For RSg
¼ 1 the precession

motion reaches the Bragg condition at one point, and for

RSg
> 1 the reflection never reaches the exact Bragg condition.

Note that RSg
> 1 does not necessarily imply the reflection is

weak or absent. A strong reflection may give appreciable

signal even relatively far away from the exact Bragg condition,

especially for very thin samples.

When processing a diffraction pattern, the program must

decide which reflections will be treated as experimentally

observed on the pattern. Each of the quantities outlined above

can be used for this purpose. The limitation on the length of g

has an obvious meaning of deciding on the maximum reso-

lution of the diffraction data. Setting a limit on S0
g is a way of

limiting the data set only to the reflections within a certain

distance from the Ewald sphere. RSg
is a less obvious, yet very

useful filter. Setting a limit on RSg
smaller than 1 results in

accepting only reflections that passed through the exact Bragg

condition. Such reflections are less affected by crystal imper-

fections, mosaicity and bending, while reflections with large

RSg
are more affected by these effects. This is due to the fact

that the primary effect of mosaicity, bending and other crystal

imperfections in the reciprocal space can be described as a

convolution of the perfect diffraction pattern with a certain

smearing function. Integrating the complete or almost

complete intensity of the reflection (i.e. RSg
significantly

smaller than 1) makes the integrated intensity insensitive to

the smearing, while if only a small part of the reflection is

integrated, the smearing can have a significant effect on the

resulting intensity. The filters on S0
g and on RSg

may be

combined. Fig. 1 shows graphically the meaning of the data-

selection filters.

2.5. Models for thickness variation in the sample

It is extremely difficult to derive exact expressions for

diffracted intensities from a crystal with a general irregular

shape. Such calculation does not only require exact knowledge

of the crystal shape, but also the coherence properties of the

electron beam. Moreover, diffraction on a slab with non-

parallel surfaces results in splitting of the beam into several

branches (Spence & Zuo, 1992; Metherel, 1975), making the

whole problem even more complicated. However, in most

electron-diffraction experiments no special care is taken to

make the beam coherent. If the crystal is not too irregular,

then the transversal coherence length can be considered small

compared to the variation of the thickness in the crystal. If the

angular deviation of the normals to opposite surfaces is also

assumed to be small, then the crystal can be approximated by

a collection of small, parallel slabs with varying thickness

(Figs. 2a, 2b), and the diffracted intensities can be calculated

as an incoherent sum of diffraction patterns emerging from

each of these small slabs. In such a case the relative position of

these small slabs is not important, and therefore the shape of

the crystal need not be known in detail. The only quantity

needed for the calculation of the intensities is the probability

density distribution of thickness across the crystal. To further

simplify the problem, the shape of the crystal may be

approximated by some simple geometric shape like a wedge, a

lens or a cylinder (Fig. 2c), and for these shapes the thickness

probability density can be derived analytically. Some of these

analytical expressions are derived in Appendix A. Because

PED intensities exhibit relatively low sensitivity to thickness

variation, using these simple geometric approximations to

crystal shapes should be a simple, but sufficiently adequate

way of describing the thickness variation effects.

2.6. Orientation of the patterns

The orientation of the crystal at the moment of recording

the diffraction pattern is a critical quantity for the calculation

of the diffracted intensities. The orientation can be deter-
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Figure 1
Schematic representation of the Ewald construction with different data-
selection criteria shown as filled areas of different colours. Yellow area:
reflections passing the limit on the length of g (limit on resolution).
Orange area: reflections passing the limit on S0

g. Green area: reflections
passing the limit on RSg

.

Figure 2
(a) Schematic representation of an irregular crystal. (b) Approximation
of the crystal by a set of small blocks with constant thickness. (c) If the
blocks from (b) are rearranged from thinnest to thickest, another crystal
is obtained, which, within the approximation of incoherent addition of
diffraction from individual blocks, gives the same diffraction pattern as
the crystal in (b). The dashed line in (c) shows that this crystal, and thus
also the original crystal shown in (a), can be approximated to a good
accuracy by a simple wedge.



mined from the orientation matrix of the crystal and the

positional angle (or angles) of the goniometer. However, a

number of effects may cause a difference between the calcu-

lated crystal orientation and the real orientation. These effects

include inaccuracy in the orientation matrix, inaccuracy in the

positioning of the goniometer or small movements of the

crystal during the experiment. It may therefore be necessary

to adjust the orientation for each pattern separately. It is

important to note that the refinement of the orientation

cannot be included in the least-squares refinement together

with other parameters. The reason is that a change of orien-

tation results in a change of excitation errors Sg, and hence a

change in the set of reflections included in the structure matrix

A [equation (3), x2.1]. Hence, the intensities are not smooth

functions of the orientation parameters, and least-squares

refinement, which is based on an assumption of a smooth

gradient, would be unstable. The optimal orientation must be

found by a more robust procedure. We use a search for the

minimum wRðallÞ factor as a function of the tilt azimuth and

tilt amplitude by means of the downhill simplex algorithm.

The details of the procedure are described in paper I, x3.2.

3. Implementation

The option for dynamical refinement has been implemented in

the data-processing program PETS (Palatinus, 2011) and

crystallographic computing system Jana2006 (Petřı́ček et al.,

2014). This section describes the details of the implementa-

tion.

3.1. Data processing

The computer program PETS is a simple program for

processing data from electron diffraction tomography. It

allows peak extraction from a series of diffraction patterns,

processing raw peak positions and producing a list of peak

coordinates in reciprocal space. This list can be used for

indexing the diffraction pattern and finding the orientation

matrix, e.g. with the dedicated graphical interface available in

Jana2006. With the orientation matrix available, PETS can

locate and integrate the diffracted intensities. In the standard

mode, the reflection intensities are integrated on each frame,

but also across the frames, to obtain a total integrated intensity

of each reflection. This mode is useful for structure solution

and refinement using the kinematical approximation. If,

however, the integration option for dynamical refinement is

invoked, PETS extracts and outputs intensities on each

pattern separately. A limit on jgj and on Sint
g is used to decide

which reflections should be integrated on a given frame.

The limit on Sint
g should be set large enough to encompass

all potentially interesting reflections. Final data filtering

according to the parameters defined in x2.4 is performed in

later stages of the procedure. The output from PETS is a CIF-

like file with most entries encoded as standard CIF entries.

However, the entries necessary for the definition of individual

patterns are not part of the standard CIF dictionary. These

entries are described and defined in Table 1.

3.2. Import of the data to Jana2006

The typical procedure for the solution and refinement of an

unknown phase is to solve the structure, perform kinematical

refinement and then switch to the dynamical refinement. In

such a case the structure project is already set up in Jana2006.

It is only necessary to replace the data set for kinematical

refinement by the data set for dynamical refinement using the

data import wizard. During the data import, Jana2006 reads

the orientation matrix, information about individual frames

(positional angles, precession angle) and the list of reflection

intensities. Each entry in the list has a frame number asso-

ciated with it. It is possible to sequentially read more data sets

from different crystals and to combine these data sets in the

refinement.

3.3. Setting the data-selection and calculation parameters

Most of the parameters and settings relevant to dynamical

refinement are concentrated in the dialog Electron diffraction

(Fig. 3). The dialog is divided into three sections. The top
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Table 1
New entries introduced in the CIF file produced by PETS.

These entries define the frames and they link individual entries of the reflection list to the frame on which they were measured.

Dictionary entry Data type Definition

(1) Entries in the category diffrn ½�
diffrn frame id Integer number Integer identifier of the frame. Used to assign reflections to a frame by means of the dictionary

entry refln frame id
diffrn frame u Number First coordinate of the normal to the frame plane expressed in crystal coordinate system
diffrn frame v Number Second coordinate of the normal to the frame plane expressed in crystal coordinate system
diffrn frame w Number Third coordinate of the normal to the frame plane expressed in crystal coordinate system
diffrn frame precession angle Number Precession angle used for the frame (in degrees)
diffrn frame alpha Number Rotation of the crystal from the zero position of the goniometer around the principal goniometer

axis (in degrees)
diffrn frame beta Number Rotation of the crystal from the zero position of the goniometer around the axis perpendicular

to the principal goniometer axis and, for zero rotation of the goniometer axis, to the incident
beam (in degrees)

(2) Entry in the category refln ½�
refln frame id Integer number Integer identifier of the frame on which current reflection was integrated



section contains the general settings of the refinement, the

middle section contains commands for optimization of scale,

thickness and orientation of the frames, and the bottom

section contains information about individual frames. The

general parameters of the refinement are:

(i) Orientation matrix: defines the orientation of the crystal

with respect to the microscope coordinate system at zero

positional angles.

(ii) Maximal diffraction vector g(max): resolution limit on

the reflections entering the structure matrix A [equation (3)].

(iii) Maximal excitation error (Matrix): limit on the exci-

tation error of reflections entering the structure matrix A.

(iv) Maximal excitation error (Refine): limit on the excita-

tion error of reflections included in the structure refinement.

This is the filter on S0
g described in x2.4.

(v) RSg: limit on the parameter RSg
(see x2.4) of reflections

included in the structure refinement.

(vi) Number of integration steps: number of steps along the

precession circuit for the integration of PED intensities (see

x2.2).

Note the principal difference between the parameters

labelled ‘Maximal excitation error (Matrix)’ and ‘Maximal

excitation error (Refine)’. The former influences the number

of beams entering the structure matrix and is purely a para-

meter of the calculation of dynamical intensities without any

relationship to experimentally measured data. The latter is the

data-selection filter. It selects a subset from the full list of

available reflection intensities, which is then used for the

structure refinement. Similarly, the ‘Maximal diffraction

vector g(max)’ is a purely computational parameter and not a

data filter, while RSg is a data filter. Obviously, all reflections

that pass the data-selection filters must also pass the filters for

structure matrix entries. Otherwise their model intensities

would not be calculated at all.

3.4. Initial estimation of thickness

Prior to starting the least-squares refinement, initial global

estimation of thickness must be performed. This is achieved by

calculating the weighted R value on all reflections [wR(all)] for

a range of thicknesses between 0 and 2000 Å. Such calculation

is performed for each frame. Thickness curves can be plotted

for each frame (Fig. 4). They allow an initial assessment of the

data quality, and allow exclusion of frames that are unsuitable

for refinement in these initial stages. The change of effective

thickness with the tilting of the crystal is taken into account

internally, and the reported thickness is always related to the

true thickness of the slab, not the projected thickness of the

tilted slab. If a constant crystal thickness is expected for all

frames, the estimated thicknesses may be averaged to obtain a

single starting thickness value for the refinement, and only one

overall thickness parameter may be refined.

3.5. Least-squares refinement

The structure-refinement procedure is the same as in the

case of X-ray diffraction data. The procedures existing in

Jana2006 for full-matrix non-linear least-squares refinement

are used. The only point where the present method differs

from the standard is the calculation of model intensities Icalc

and their derivatives with respect to the refined parameters,

which are necessary to build the matrix of normal equations

for least-squares calculation. Instead of using the relationship

Ih ¼ jFhj
2, intensities and their derivatives are calculated using

the dynamical-diffraction theory as described in x2.1. The

result of the calculation is then used to build the matrix of

normal equations, and the refinement proceeds as usual. This

approach makes it possible to use seamlessly all the crystal-

lographic tools available in Jana2006, like various types of

constraints, restraints, reflection selection criteria, automatic

restrictions on symmetry etc. Technically, the dynamical

calculations are performed in a separate executable, which is

invoked by Jana2006 and which returns all necessary quan-

tities. This solution was adopted to allow the use of parallel

computing, which is not yet available in Jana2006.

The refinement can involve any structural parameter

available in Jana2006, typically atomic positions, occupancies

and displacement parameters. In addition to the structure
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Figure 4
An example of a plot of wR1 as a function of thickness for one frame
produced by Jana2006. The red vertical line shows the thickness with the
minimum wR1.

Figure 3
The dialog window ‘Electron diffraction’ of Jana2006, which allows the
setting of parameters specific to dynamical refinement of electron-
diffraction data.



parameters, the refinement involves optimization of crystal

thickness and also scale parameters of individual frames.

These scale parameters represent a significant number of

refined parameters, because there are typically several dozens

or even over a hundred frames in an EDT data set. However,

it appears to be necessary to refine these parameters inde-

pendently. The reason is that the scale on diffracted intensities

does not depend only on the irradiated volume, but also on the

irradiated area. This area changes as the crystal is tilted, and

the scale thus varies from frame to frame. Moreover, the scale

might depend on other quantities which are not easily

controllable in the experiment. Refining the scale parameters

of each frame separately is a way of avoiding complicated and

potentially inaccurate estimation of the scale factor by other

means. It must only be ensured that the data-to-parameter

ratio remains sufficiently large.

4. Example

The method was tested on a series of samples. A thorough

discussion of all aspects of the refinement, optimal values of

parameters, improvement obtained with respect to the kine-

matical refinement etc. requires a separate, dedicated publi-

cation. Moreover, it is surprisingly difficult to find an example

void of any problems and requiring no detailed discussion. In

this work we therefore restrict the demonstration only to one

illustrative example. The selected compound is a thin nano-

wire of Ni2Si (Fig. 5). So far, the structure of Ni2Si has been

obtained only by a powder X-ray diffraction study (Landrum

et al., 1998). The precession EDT (PEDT) experiment was

performed on a Philips CM120 transmission electron micro-

scope equipped with a Nanomegas Digistar precession device

and an upper-mounted CCD camera Olympus Veleta with 14-

bit dynamic range. The diffraction data were processed with

PETS and refined by Jana2006 using both the standard

kinematical approximation and the new dynamical refinement

presented in this work. The experimental and refinement

details are summarized in Table 2.

Table 3 compares the refined fractional coordinates

obtained by kinematical refinement, dynamical refinement

and the reference powder X-ray diffraction experiment

(Landrum et al., 1998). It is seen that, for most fractional

coordinates, the dynamical refinement yields values closer to

the X-ray structure, and where the agreement is worse, the

difference is small. The maximum distance to the corre-

sponding atomic position in the reference structure decreased

from 0.042 Å for kinematical refinement to 0.020 Å for

dynamical refinement. Moreover, the the e.s.d.’s of the frac-

tional coordinates from Landrum et al. (1998) are on average

about twice as large as the e.s.d.’s of the dynamical refinement.

Thus, the inaccuracy of the parameters in the reference

structure may be significantly contributing to the distances.

The results show that the dynamical refinement of a structure

obtained from a single nanowire provides results at least

comparable, if not superior, to the results of the Rietveld

refinement from the bulk powder sample. The improvement

over the kinematical refinement is significant despite the fact

that the crystal was very thin and the kinematical refinement

yielded very good results, if compared with typical kinematical

refinements (Kolb et al., 2011).

5. Conclusions and outlook

We have introduced a method for accurate refinement of

crystal structures from single-crystal data collected by electron

research papers
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Table 2
Experimental and refinement details of the kinematical and dynamical
refinement of an Ni2Si nanowire.

Space group Pnma
a (Å) 5.041
b (Å) 3.741
c (Å) 7.151
Vuc (Å3) 134.87
Density (g cm�3) 7.15
Z 4
� (Å) 0.0335
Resolution (Å) 0.714
No. of recorded frames 95
Precession angle ’ (�) 1.5

Kinematical Dynamical

Rint (obs/all) (%) 20.35/20.69
Completeness (%) 93.7 94.6
No. of reflections (obs/all) 169/208 1162/2166
No. of structural parameters 9 9
No. of scale factors 1 95
gmax (Å�1) 2
Smax

g (matrix) (Å�1) 0.01
Smax

g (refine) (Å�1) 0.05
Rmax

Sg
0.75

Refined average thickness (nm) 8.6 (1)
R (obs/all) (%) 16.38/18.59 8.82/14.56
wR (obs/all) (%) 19.94/20.03 8.68/9.04
Goodness of fit (obs/all) (%) 11.59/10.43 3.23/2.47

Figure 5
Image of the nanowire of Ni2Si used to collect data for the structure
refinement.



diffraction tomography. The model intensities are calculated

using the dynamical-diffraction theory, and thus allow a more

accurate and statistically meaningful treatment of the data

than the refinements using kinematical approximation. The

procedure has been implemented in the computer programs

PETS and Jana2006. The implementation is governed by the

principle that the whole method should resemble the standard

refinement procedure used in single-crystal X-ray diffraction.

This should make the method easily accessible to all crystal-

lographers skilled in standard structure analysis. The method

was tested on a number of crystal structures of variable

complexity, for which the reference structure obtained by

X-ray diffraction was available. These tests show that the

method is usable in practice and they also give insight into the

optimal setting of the parameters of the method. Because of

the large amount of information that needs to be presented,

we limited the presentation in this paper to only one illus-

trative example. A full discussion of the test cases will be

presented in a separate article.

APPENDIX A
Analytical expressions for cumulative distribution
functions of thickness for some idealized crystal shapes

Assuming that the thickness probability distribution function

f ðtÞ is known, the diffracted intensity can be calculated within

the approximation of incoherent superposition as

Ih ¼
Rtmax

tmin

IhðtÞf ðtÞ dt: ð10Þ

During numerical evaluation of this expression, the intensity is

evaluated as a function of thickness in a set of n discrete

intervals between tmin and tmax in steps of �t. The total

intensity must be approximated by a discrete summation:

Ih ’
Pn
i¼1

IhðtiÞ
Rtiþ�t=2

ti��t=2

f ðtÞ dt

" #

¼
Pn
i¼1

IhðtiÞ Fðti þ�t=2Þ � Fðti ��t=2Þ
� �

: ð11Þ

In this equation FðtÞ represents the cumulative distribution

function corresponding to the probability distribution func-

tion f ðtÞ, and the special form of the summation terms at t1 and

tn was omitted for simplicity.

In the following sections we derive the analytical expres-

sions for the cumulative distribution functions for thickesses

of four model crystal shapes: wedge, cylinder, ribbon with

lens-like intersection and a convex lens.

Before doing so we define the conventions and notation

used throughout this appendix: (i) the beam is assumed to be

coming to the crystal vertically, i.e. along the z axis of the

coordinate system; (ii) t, thickness measured along the inci-

dent beam direction; (iii) D, the maximum lateral length of the

crystal; (iv) tm, the maximum thickness of the crystal; (v) f,

‘flatness parameter’, f ¼ tm=D; (vi) �, reduced thickness,

� ¼ t=tm; (vii) x, lateral distance from the origin of the coor-

dinate system.

A1. Wedge

A wedge-shaped crystal has a linear dependence of the

thickness on the lateral coordinate x. FðtÞ is thus proportional

to t (Fig. 6a), and because for t ¼ tm FðtÞmust be equal to 1, we

get a very simple result in terms of the reduced thickness �:

Fð�Þ ¼ �: ð12Þ

A2. Cylinder

A long cylinder is a model for a nanowire or needle-shaped

crystal. For simplicity we will consider only a cylinder lying

perpendicular to the incoming beam. The problem then

reduces to a two-dimensional problem of determining the FðtÞ

of a circle. The maximum thickness in the cylinder is equal to

its diameter. FðtÞ can be determined from the following

consideration: a certain thickness t is encountered in the circle

only twice, at positions �x, where x is given by

x ¼
D

2

� �2

�
t

2

� �2
" #1=2

: ð13Þ

The value of FðtÞ, i.e. the probability that a vertical beam

hitting the crystal encounters a smaller thickness than t, is

given by the ratio ðD� 2xÞ=D ¼ 1� 2x=D (Fig. 6b). Recalling

that tm ¼ D, substituting equation (13) for x and simplifying

the expression, we obtain
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Figure 6
Cross section of a wedge-shaped crystal (a) and a cylindrical crystal (b).
Shaded areas highlight the parts of the crystals thinner than t.

Table 3
Fractional coordinates for the three independent atoms obtained by
kinematical and dynamical refinement and from the reference structure
(Landrum et al., 1998).

Distances to the reference structure are also shown. The fractional coordinate
y is symmetry restricted to 0.25 for all atoms.

Atom Coordinate Kinematical Dynamical Reference

Ni1 x 0.0420 (13) 0.0427 (3) 0.0405 (7)
z 0.7066 (11) 0.7066 (3) 0.7053 (4)

Ni2 x 0.1725 (13) 0.1699 (3) 0.1682 (7)
z 0.0618 (12) 0.0627 (3) 0.0602 (4)

Si1 x 0.2165 (23) 0.2118 (6) 0.2096 (15)
z 0.3881 (17) 0.3866 (4) 0.3849 (9)

Distance to the position in the reference structure (Å)
Ni1 0.012 (8) 0.014 (4)
Ni2 0.025 (8) 0.020 (4)
Si1 0.042 (14) 0.016 (8)



FðtÞ ¼ 1� 1�
t

tm

� �2
" #1=2

; ð14Þ

or, in terms of the reduced thickness,

Fð�Þ ¼ 1� ð1� �2
Þ

1=2: ð15Þ

A3. Ribbon with lens-shaped cross section

As in the case of a cylinder, the problem in this case can be

reduced to two dimensions. A lens in two dimensions can be

described as an intersection of two discs of equal radius

displaced with respect to each other in the vertical direction

(Fig. 7a). The general expression for FðtÞ remains the same as

for a cylinder: FðtÞ ¼ 1� 2x=D, where x is the lateral distance

from the centre of the lens, at which the lens has thickness t

(Fig. 7a). The expression for x as a function of t is

x ¼
ðD=2Þ2 þ ðtm=2Þ2

tm

� �2

�
t

2
þ
ðD=2Þ2 � ðtm=2Þ2

tm

� �2
( )1=2

:

ð16Þ

This expression simplifies greatly if we use the flatness para-

meter f and reduced thickness �:

x ¼
D

2
1� �2f 2

� � 1� f 2
� 	� �1=2

: ð17Þ

The cumulative distribution function then becomes

Fð�Þ ¼ 1� 1� �2f 2 � � 1� f 2
� 	� �1=2

: ð18Þ

The formula reduces to that for the cylinder for f ¼ 1.

A4. Convex lens

A standard convex lens is generated by the rotation of the

two-dimensional lens from the previous case around the

vertical axis. Following the same consideration as above, we

conclude that FðtÞ in this case is given by the ratio of the area

of the lens with thickness smaller than t to the total area (Fig.

7). Let x be the lateral distance from the centre of the lens at

which the lens has thickness t. Then

Fð�Þ ¼
� D=2ð Þ

2
�x2

� �
� D=2ð Þ

2 ¼ 1�
2x

D

� �2

: ð19Þ

Expression for x is given by equation (17). Plugging equation

(17) into the above expression we obtain the result

Fð�Þ ¼ �2f 2 þ � 1� f 2
� 	

: ð20Þ

Setting f ¼ 1 we obtain an especially simple expression for a

sphere: Fð�Þ ¼ �2. For a very flat lens (f ! 0) Fð�Þ ! � and

has thus the same form as Fð�Þ of a wedge.

Cumulative distribution functions of other shapes can be

derived analogically to the examples above. Plots of cumula-

tive probability functions of selected shapes are shown in Fig.

8. It should be noted that using equation (11) for calculating

the intensities does not make the calculation much more time

consuming. This is because only one matrix diagonalization is

required for calculating intensities at several thicknesses.

Calculating intensities at 20 different thickness values instead

of one increases the computing time by approximately 40%.
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(2011). Inorg. Chem. 50, 3743–3751.
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